Generating Artificial Error Data for Indonesian Preposition Error Corrections
نویسندگان
چکیده
منابع مشابه
Generating artificial errors for grammatical error correction
This paper explores the generation of artificial errors for correcting grammatical mistakes made by learners of English as a second language. Artificial errors are injected into a set of error-free sentences in a probabilistic manner using statistics from a corpus. Unlike previous approaches, we use linguistic information to derive error generation probabilities and build corpora to correct sev...
متن کاملChinese Preposition Selection for Grammatical Error Diagnosis
Misuse of Chinese prepositions is one of common word usage errors in grammatical error diagnosis. In this paper, we adopt the Chinese Gigaword corpus and HSK corpus as L1 and L2 corpora, respectively. We explore gated recurrent neural network model (GRU), and an ensemble of GRU model and maximum entropy language model (GRU-ME) to select the best preposition from 43 candidates for each test sent...
متن کاملUsing Parse Features for Preposition Selection and Error Detection
We evaluate the effect of adding parse features to a leading model of preposition usage. Results show a significant improvement in the preposition selection task on native speaker text and a modest increment in precision and recall in an ESL error detection task. Analysis of the parser output indicates that it is robust enough in the face of noisy non-native writing to extract useful information.
متن کاملRobust Systems for Preposition Error Correction Using Wikipedia Revisions
We show that existing methods for training preposition error correction systems, whether using well-edited text or error-annotated corpora, do not generalize across very different test sets. We present a new, large errorannotated corpus and use it to train systems that generalize across three different test sets, each from a different domain and with different error characteristics. This new co...
متن کاملThe Effect of Error Rate in Artificially Generated Data for Automatic Preposition and Determiner Correction
In this research we investigate the impact of mismatches in the density and type of error between training and test data on a neural system correcting preposition and determiner errors. We use synthetically produced training data to control error density and type, and ”real” error data for testing. Our results show it is possible to combine error types, although prepositions and determiners beh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Technology
سال: 2017
ISSN: 2087-2100,2086-9614
DOI: 10.14716/ijtech.v8i3.4825